Information and entropy of countable measurable partitions. I

نویسندگان

  • Minaketan Behara
  • Prem Nath
چکیده

In ergodic theory, the notions of information and entropy are separated from each other. In the existing literature, it is usual to assume the additive nature of information. In this paper, we have proposed a general definition of information in § 2 and studied its properties extensively in § 3. In § 4, information and entropy of countable measurable partitions of a Lebesgue probability space have been defined.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A local approach to the entropy of countable fuzzy partitions

This paper denes and investigates the ergodic proper-ties of the entropy of a countable partition of a fuzzy dynamical sys-tem at different points of the state space. It ultimately introducesthe local fuzzy entropy of a fuzzy dynamical system and proves itto be an isomorphism invariant.

متن کامل

Tsallis Entropy and Conditional Tsallis Entropy of Fuzzy Partitions

The purpose of this study is to define the concepts of Tsallis entropy and conditional Tsallis entropy of fuzzy partitions and to obtain some results concerning this kind entropy. We show that the Tsallis entropy of fuzzy partitions has the subadditivity and concavity properties. We study this information measure under the refinement and zero mode subset relations. We check the chain rules for ...

متن کامل

Krieger’s Finite Generator Theorem for Actions of Countable Groups Ii

We continue the study of Rokhlin entropy, an isomorphism invariant for p.m.p. actions of countable groups introduced in the previous paper. We prove that every free ergodic action with finite Rokhlin entropy admits generating partitions which are almost Bernoulli, strengthening the theorem of Abért–Weiss that all free actions weakly contain Bernoulli shifts. We then use this result to study the...

متن کامل

Ergodic Actions of Countable Groups and Finite Generating Partitions

We prove the following finite generator theorem. Let G be a countable group acting ergodically on a standard probability space. Suppose this action admits a generating partition having finite Shannon entropy. Then the action admits a finite generating partition. We also discuss relationships between generating partitions and f-invariant and sofic entropies.

متن کامل

Krieger’s Finite Generator Theorem for Actions of Countable Groups I

For an ergodic p.m.p. action G y (X,μ) of a countable group G, we define the Rokhlin entropy hRok G (X,μ) to be the infimum of the Shannon entropies of countable generating partitions. It is known that for free ergodic actions of amenable groups this notion coincides with classical Kolmogorov– Sinai entropy. It is thus natural to view Rokhlin entropy as a close analogue to classical entropy. Un...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Kybernetika

دوره 10  شماره 

صفحات  -

تاریخ انتشار 1974